Induction Couplers: Contactless On-Orbit Actuation

Title Text

[Lucas et. al.; 1977]

Contactless Spacecraft Actuation

On-Orbit Servicing

Eddy-Current Forces

Force Model

Planar Inspection

Motion Primitives

Algorithmic Design

On-Orbit Servicing

  • Inspect
  • Repair
  • Re-purpose
  • Remove

 

 

[Sullivan,Barnhart,Hill,et.al.; Space '13]

[Choset, Knepper, Flasher, et. al; ICRA '99]

For More:  [Ellery,Kreisel, Sommer; AA '08][Tweddle; GNC '11][Flores-Abad,Pham, Ulrich; PAS '14][Nguyen-Huynh, Sharf; '11]

Contactless Spacecraft Actuation

On-Orbit Servicing

Eddy-Current Forces

Force Model

Planar Inspection

Motion Primitives

Algorithmic Design

Contactless Actuation

[Porter,Alinger, Sedwick, et al;  JSR '13]

[Shoer,Peck;  JSR '09]

[Wang,Schaub;  JGCD '08]

[Brozobohaty, Karasek, Siler, et al; NP '13]

Contactless Spacecraft Actuation

On-Orbit Servicing

Eddy-Current Forces

Force Model

Planar Inspection

Motion Primitives

Algorithmic Design

EC Force Applications

[Rem, Leest, van den Akker; IJMP '97]

[Sodano, Inman; JDSMC '08]

[Ohji,Shinkai,Amei,et.al; JMPT '07]

Focus on Robotic Inspection but ...

Many Space Applications

Active Detumbling

Docking   [pic:NASA]

Manipulation  [Pic:NASA]

Contactless Spacecraft Actuation

On-Orbit Servicing

Eddy-Current Forces

Force Model

Planar Inspection

Motion Primitives

Algorithmic Design

[Reinhardt, Peck; SciTech '14][Reinhardt, Peck; GNC '12]

Governing

Equations

Dynamic Solution: 2D

[Paudel,Bird;IEEETM '12]

Dynamic Solution: 3D

Characterizing Eddy-Current Forces

Air Track Experiments

Air Track Experiments: Resuts

Contactless Actuator Comparisons 

Linear and Nonlinear Behavior

Contactless Spacecraft Actuation

On-Orbit Servicing

Eddy-Current Forces

Force Model

Planar Inspection

Motion Primitives

Algorithmic Design

[Reinhardt, Peck; JSR (Submitted)][Reinhardt, Peck; Smallsat 2014]

Goal: Control in a Plane

$$ \begin{pmatrix} I\dot{\omega} \\ m\ddot{x} \end{pmatrix} = \begin{pmatrix} -\omega^{ \times} \left( I\omega \right) \\ 0 \end{pmatrix} + \begin{bmatrix} 1 & 0 \\ 0 & R \end{bmatrix} Ju $$

$$\textbf{F}_i=\left(1-\beta_1 \right )\hat{a}_1^{\times}\hat{n} + \beta_1\hat{n}$$

$$ J = C\begin{bmatrix} d_1^{\times}\left[ \textbf{F}_1\right ]& ... & d_N^{\times} \left[\textbf{F}_N\right ] \\ \textbf{F}_1&... & \textbf{F}_N \end{bmatrix} $$

Coupler-Augmented Dynamics

Inspection Simulation

Inspection Path

Inspection Control

Contactless Spacecraft Actuation

On-Orbit Servicing

Eddy-Current Forces

Force Model

Planar Inspection

Motion Primitives

Algorithmic Design

[Reinhardt, Peck; IEEE Trans. Robot (Preparation)][Reinhardt, Peck; ICRA '15]

\neq

Planar vs. Out-of-Plane Motion

The Four Motion Primitives

Planar Motion

Planar Translation: Simulation

Planar Translation: Experiment

Planar Rotation

Out-of-Plane Motion

Out-of-Plane Primitives

Zone of Safety

Multi-Primitive Trajectory: Setup

Multi-Primitive Trajectory: Phases

Multi-Primitve Trajectory: Results 1

Multi-Primitve Trajectory: Results 2

Contactless Spacecraft Actuation

On-Orbit Servicing

Eddy-Current Forces

Force Model

Planar Inspection

Motion Primitives

Algorithmic Design

[Reinhardt, Knepper, Peck; IJRR. (Submitted)]

Why Algorithmic Design?

Algorithm

Generate Design

Generate Gains

Connect Gains

Controllable Volume

Algorithm: Output Example

Algorithm

Human

V_a = 1.755e-10
Va=1.755e10
V_h = 4.833e-11
Vh=4.833e11
x_1(m)
x1(m)
x_1(m)
x1(m)
x_2(m)
x2(m)
x_2(m)
x2(m)

Summary

  • Force Model
  • Planar Inspection
  • Motion Primitives
  • Algorithmic Design

Bonus: Detumbling

Rotation Sensing

$$\boldsymbol{\tau} \propto -c\boldsymbol{\omega} + \textbf{r} \times \boldsymbol{\omega} \times \textbf{x}$$

Lyapunov Stability

$$E = \frac{1}{2} \boldsymbol{\omega} \cdot \mathbb{I} \cdot \boldsymbol{\omega}$$ $$\dot{E} = -c\| \boldsymbol{\omega}^2 \| $$

Active Detumbling

$$E = \frac{1}{2} \boldsymbol{\omega} \cdot \mathbb{I} \cdot \boldsymbol{\omega}$$ $$\dot{E} = -c\| \boldsymbol{\omega}^2 \| -c_2 \|\boldsymbol{\omega} \| \| \boldsymbol{\omega}_m \| $$